The following provides written responses to questions received and discussed during the Q&A portion of the Community Meeting held on July 16, 2020 below. If you have any additional questions about the project or would like to provide additional feedback, please utilize the web-based survey or contact City staff.

The web-based survey is a Google Form available at tinyurl.com/white-rock-2. The Google Form will be active until August 7, 2020. Comments can also be provided to our designated City of Dallas project contact.

Also, the DRAFT Feasibility Study Report has been posted to the Dallas Park and Recreation website at the following address: https://www.dallasparks.org/235/White-Rock-Lake. This report is available for public comment through August 7, 2020.

If you are interested in staying informed, please provide your contact information via the web form or reach out to the contact provided.

1) Is there a capacity issue that needs to be addressed, or is this effort mainly focused on recreation?
The primarily focus of a dredging operation at White Rock Lake would be to enhance recreation, including activities both in and around the lake. The lake is no longer used as a water supply source and has never been used for flood protection, so flood storage and water supply capacity are not being considered in project development.

2) What is the anticipated volume to be dredged?
The consultant has prepared a full matrix of options for use by the City which allows a total dredging volume and cost to be calculated depending on the areas and depth selected for dredging. The City can use this tool to scale the proposed dredging operation based on available funding for the project. The scenarios presented in this report range from about 9,500,000 – 11,000,000 cubic yards over a 50-year evaluation period.

3) What infrastructure remains from the prior dredging that can and will be used in the next dredging?
Based on discussions with former City staff who were involved with the 1998 dredging project, as well as information from the dredging contractor, it appears that most of that infrastructure was removed and/or abandoned. There may be some physical crossings that still exist, but these have not been maintained in the 20 years since the project was completed. Additional condition assessments would be needed to evaluate the potential for reuse.

4) Will the dredging also be done in the various creeks that also feed into the lake, carry stormwater runoff, and are also filled with dirt from the streets?
The feasibility study has focused on dredging sediment from the lake itself.

5) What Chemicals of Concern were found in the sediment and where were those samples taken from?
All results of sediment sampling are included in the draft feasibility study report, which has been posted on the Dallas Park and Recreation website, and any additional information will be included in the final report. None of the chemicals that were tested for were measured at a level above the threshold that is considered safe for human exposure or what might be expected in an urbanized area. Sediment testing is part of a standard process for a dredging project development. It was undertaken early on due to public interest and to help inform the City about any special handling or disposal requirements that would impact project feasibility and cost.

6) Has any consideration been given to address shoreline erosion, or is that later in the planning?
Shoreline erosion was not evaluated as part of the dredging study.

7) Is fishing a consideration here? The silt is impacting what could be a great fishery.
Fishing is considered one of the recreational uses of the lake and was considered during concept development, but no detailed analysis was performed specifically with the goal to improve fishing opportunities.
8) Does the City own a dredge platform?
The City does not currently own a dredge barge that could be used for dredging at White Rock Lake. Costs were developed assuming that dredging would be a contracted work activity. The City could consider purchasing a barge as part of an annual dredging program. Any potential cost savings involved in performing this work in-house would need to be evaluated against the cost to acquire, maintain, and operate the equipment and to train City staff to conduct dredging activities, including the removal and disposal of dredged material.

9) How much has dredging technology changed in the last 30 - 50 years? Could future technology mean that a different solution makes the most sense in the future?
For hydraulic dredging, cutterhead efficiencies have improved making fewer impacts during construction. In terms of putting in slurry and pumping long distance, the general mechanics remain the same. It is unlikely that any major technical improvements would be made in the near future to affect decisions being made.

10) Does the dredged sediment have potential to be reused in earthen dam applications, such as the Lake Lewisville dam improvement project?
It is unlikely that the dredged sediment will be able to be reused in earthen dam applications. Compacted material for dam construction has more stringent material specifications due to safety considerations. Sediment removed from White Rock Lake is anticipated to contain silt material that is not appropriate for dam improvement projects.

11) How far along is the PGA in building its courses up in Frisco? Any chance they could use the dredged material?
Reuse of lake sediment in private land cover applications may be possible but would require additional sediment testing for pollutants. Reuse may be considered at later stages in project development when there is a clearer picture of the anticipated project timing.

12) Can the dredged material be used in whatever happens at the Tenison Glen Course, which is slated for redevelopment? Similarly, what about the Trinity Spine Trail?
The option to reuse sediment at Tenison Glen and the Trinity Spine Trail was specifically investigated based on feedback from the first public meeting. Unfortunately, these sites are located in a regulated FEMA floodplain, so adding a large volume of fill in these areas would not meet the City’s floodplain management regulations.

13) Should plans be made to collect sediment upstream so future dredging will not be required? Are you considering increasing storage upstream or measures to reduce sediment entering the lake?
As part of the project, we evaluated the installation of a sediment forebay upstream of White Rock Lake to capture sediment before it enters the lake. An area of approximately 120 acres would be required for an assumed sediment removal frequency of approximately 10 years. The area immediately upstream of White Rock Lake is a wetland area under the jurisdiction of the US Army Corps of Engineers (USACE). The installation of a sediment forebay of this size would most likely be negatively impactful to this environment and is therefore unlikely to be permitted. Other options to reduce the sediment loading were not considered as part of this project. Since the majority of the contributing watershed is outside of the limits of the City of Dallas, this effort would require extensive coordination with neighboring municipalities.

14) Are there ponds upstream to intercept sediment?
This was not evaluated as part of the project. Sediment capture efficiency decreases with distance from the lake. Additionally, this concept would require coordination with neighboring municipalities and is unlikely to be a viable option.

15) Besides the large forebay scenario, has the study considered other sustainable solutions/means of reducing sediment inflow to the lake?
A program to reduce sediment loading in creeks and other waterbodies is a worthwhile regional initiative, but a comprehensive study and recommendation on this topic is beyond the scope of study. Several mechanisms exist to minimize sediment deposition in reservoirs by routing sediment around or through storage features, however these options would require a major redesign of the dam, park, and reservoir.
16) **Do the dredging estimates account for the impact of silt reduction environmental regulations for construction sites?**
The sedimentation rate was estimated based on historical data and previous surveys of the lake. That rate has not been constant over time, due to things like enhanced sediment and erosion regulations and build-out condition of the contributing watershed. These factors were considered to influence the overall measured rate. Additional information and future studies can help refine this number, but the estimated rate is appropriate for planning purposes.

17) **What is a “lake use disruption?” Will dredging disrupt boating activities as well as access to the trails around the lake while dredging is in process?**
The footprint of any lake use disruption would be focused around the dredge barge area and a transmission pipeline with a near shore area that would be temporarily restricted for construction staging. The goal is to minimize impact to lake use as much as possible. Boaters would need to steer clear of the dredge barge which would be the primary disruption. Ultimately the footprint is small considering size of lake. There are also secondary impacts such as noise from the equipment, smell, and the visibility of the dredging operation.

18) **What is the impact to typical recreational lake activities in an annual dredging option?**
Construction activities occur more frequently during annual dredging, mainly through use of a dredge barge. There is a mechanism underwater excavating and removing sediment via suction. The immediate area, transmission pipelines to disposal location, and a near shore staging area where the barge would be launched would comprise the footprint. The footprint is relatively small compared to size of lake. The dredge barge would be moving around to various locations of lake which would see local impacts and require coordination with lake users.

19) **What are the permit implications of annual maintenance dredging? Does annual maintenance simplify permitting? Can it all be considered part of the same permit?**
If a dredging alternative is selective based on an annual/bi-annual maintenance program, the goal would be to also approach permitting from a programmatic perspective. This approach is likely to involve permitting the larger dredging program as a whole and getting pre-authorizations for recurring dredging and sediment disposal.

20) **How will dredging material be conveyed to a disposal site?**
Hydraulic dredging is preferred method using a barge and pipeline that is installed from the lake to disposal site. Sediment may be pumped directly to disposal site or may be conveyed to an intermediate site for dewatering. Double-handing of sediment from a dewatering site to a disposal site is not preferable but is a possibility if an optimal disposal site cannot be identified.

21) **How were the cost estimates developed?**
The development of cost estimates considered the costs from the 1998 dredging project at White Rock Lake, estimates from previous studies including the City’s Comprehensive Dredge Management Program report, and past dredging projects performed by the consultant. Additionally, the USACE performs a fair amount of dredging every year, so costs were compared to available bid tabulations from recent USACE projects.

22) **Why is there such a large range for the costs?**
The cost estimates are provided as a range because several details regarding the dredging methodology, amount of sediment to be removed, and disposal location have yet to be determined. Further refinement of the cost estimate will be part of future phases of the project.

23) **Which alternative is best: a periodic, large capital project, or a frequent maintenance dredging operation?**
Ultimately, there are a lot of variables, with pros and cons on all sides. The overall goal of this study is to present how these options would look over a long lifecycle, particularly on cost, and to use the past programs to help the City make decisions for the future. The dredging performed in the 1990s and 1970s were individual dredge operations. This may be preferable to citizens, or there may be an appetite for more of an ongoing maintenance dredging program. The overall cost of the program is a significant factor, as is the frequency of disruption from either the dredging operation or the accumulated sediment.